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Abstract-The transient conjugate cooling of a thin horizontal plate enclosed in an adiabatic cavity is 
studied using asymptotic and numerical techniques. The upper surface of the plate is in contact with a fluid 
initially at rl:st. The most important parameter to be obtained is the nondimensional cooling time, which 
depends on the aspect ratio of the plate E, the nondimensional longitudinal heat conductance of the plate 
a and the Prandtl number of the fluid Pr, for large values of the Rayleigh number of the laminar natural 
boundary layer flow induced by the density changes. Both the thermally thin (d( i> E’) and thick wall regimes 
(x - E*) are considered in this paper. A minimum nondimensional cooling time is achieved for a thin plate 
(E + 0) for values of the nondimensional longitudinal thermal conductance of the plate c(, such as e* << G( << 1. 
That is. the orocess is faster if the longitudinal heat conduction through the wall is negligible. 0 1998 

Elsevie; Science Ltd All rights reserved. 

1. INTRODUCTION 

The study of coupled interaction of conduction and 
convection heat transfer is extremely important 
because it appears in many practical and industrial 
devices. Many works have appeared in the literature 
studying the free or natural convective heat transfer 
from horizontal solid surfaces facing up or down, with 
prescribed surface temperature or heat flux [l-lo], 
among others, since the now classical work of 
Stewartson [l]. An excellent review can be found in 
[9]. However, the combined conduction-convection 
heat transfer process for horizontal plates has received 
very little attention. The influence of solid heat con- 
duction in horizontal plates on the natural convective 
heat transfer process has been analyzed only in few 
works. Luna et OZ. [l l] and Luna and Trevifio [12] 
studied the steady-state and the transient process of 
a horizontal wal!. separating two fluids at different 
temperatures, respectively. They found that the longi- 
tudinal heat conduction does not have any influence 
in the steady-process, because of the absence of any 
temperature gradients in the thermally thin wall 
regime. However, for the transient process, the longi- 
tudinal heat conduction through the plate has an 
important effect on the evolution time. 

The objective of this paper is to evaluate the cooling 
process of a horizontal heat conducting plate, which 
has a fluid over i1.s upper face. The other surfaces are 
assumed to be adiabatic. We will study here the case 
where the plate is hotter than the fluid. This process 
can be found in many practical devices, specially in 
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electronic equipment like chips over horizontal 
surfaces. For very large values of the Rayleigh 
number, Ra, boundary layers develop from the edges 
of the plate towards the center, forming here a buoy- 
ant plume rising above the upper surface. The thick- 
ness of the plume is of the order of magnitude of the 
thickness of the boundary layer at the center. Here, 
the boundary layer approximation breaks down. 
However, for large values of the Rayleigh number, 
the thickness of this region related to the length of the 
plate is very small, of order Ra-‘15. The central region 
is for this problem not very important, because the 
higher heat transfer rates occur on the edges of the 
plate. For these reasons, it is justified to neglect the 
influence of the plume in the present work. 

2. FORMULATION 

Consider a horizontal heat conducting strip of 
width 2L, thickness h and initial uniform temperature 
T,,. The upper face of the strip contacts a fluid with 
temperature T, < T,,. The lower and lateral walls 
are supposed to be adiabatic. The physical model 
under study is shown in Fig. 1. Due to the longitudinal 
heat conduction in the strip, temperature differences 
appear in the fluid, inducing natural convection flows 
due to the corresponding density changes. An order 
of magnitude analysis shows that these motions occur 
in boundary layers with thickness of order L/Ra’15, 
for large values of the Rayleigh number, Ra = gflAT 
Pr L3/v2. Here, g is the acceleration of gravity, fl and 
v are thermal expansion coefficients and kinematic 
viscosities of the fluid. Pv denotes the Prandtl number, 
Pr = pvcli, where p is the density, c is the specific heat 
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NOMENCLATURE 

specific heat of the fluid 
specific heat of the plate 
nondimensional stream function for 
the fluid defined in equation (6) 
acceleration of gravity 
thickness of the strip 
half-width of the strip 
Prandtl number of the fluid, Pr = pc/,? 
Rayleigh number, 
Ra = gpAT,Pr L3/v2 
nondimensional slow time variable, 
S=Z 
initial temperature of the plate 
fluid temperature far away from the 
plate 
characteristic cooling time for the plate 
diffusion time in the transversal 
direction of the plate 
diffusion time in the longitudinal 
direction of the plate 
characteristic residence time, t, = L/u, 
characteristic induced velocity 
introduced in equation (1) 
horizontal and vertical Cartesian 
coordinates 
nondimensional transversal 
coordinate for the plate, z = y/h. 

Greek symbols 
c1 heat conduction parameter defined in 

equation (3) 

thermal expansion coefficient of the 
fluid 
thickness of the boundary layer 
flow 
initial temperature difference, 
AT, = T,., - T, 
aspect ratio of the plate, E = h/L 
similar variable defined in equation 

(5) 
nondimensional temperature of the 
fluid defined in equation (6) 
nondimensional temperature of the 
plate defined in equation (6) 
thermal conductivity of the 
fluid 
thermal conductivity of the 
plate 
dynamic viscosity of the fluid 
kinematic viscosity of the fluid 
nondimensional time, < = CLZ/E~ 
density of the fluid 
density of the plate 
nondimensional short time variable, 
d = !X 
nondimensional time defined in 
equation (5) 
nondimensional pressure defined in 
equation (6) 
nondimensional longitudinal 
coordinate, x. = x/L 
stream function for the fluid. 

Fig. 1. Physical problem sketch showing the plate in a partial 
adiabatic enclosure. 

and I is the thermal conductivity of fluid, respectively. 
ATis the actual temperature difference across the fluid 
layer. After defining the Rayleigh number with the 
initial temperature difference, Ra, = gfi( T,,,, - T,) Pr 
L3/v2, the order of magnitude of the boundary layer 
thickness and the induced velocity are given by 

and u, - 

(1) 
where AT, = T,,,, - T,, corresponds to the initial 
temperature difference. The order of magnitude of the 
heat flux across the fluid is then 

/I(AT)6/5 Raz5 &AT,,, p,c,hAT, 

’ N L(AT,)“’ 
N-N 

h te 
. (2) 

In these relationships, pW, c, and 2,. represent the 
density, specific heat and thermal conductivity of the 
wall material. AT, is the characteristic transversal 
temperature drop at the wall and t, is the characteristic 
evolution time of the transient process. The last term 
in relation (2) comes from the thermal energy accumu- 
lation. From relationships (2), we obtain the order of 
magnitude of the characteristic evolution time as 

Ih 1 with a~?-~ 
1 L Ra’/’ ’ m 
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Here, t,, corresponds to the diffusion time in the trans- 
versal direction of the strip, E is to the aspect ratio of 
the strip and is to be assumed very small compared 
with unity. Parameter c( is the nondimensional longi- 
tudinal heat conductance of the trip and corresponds 
to the ratio of heat conducted longitudinally by the 
plate to the heat convected to the fluid. This parameter 
can have values much larger or much smaller than 
unity, depending on the strip material. For values such 
as a/e’ >> 1, the evolution time is much larger than the 
diffusion time in the transversal direction of the plate. 
Therefore, no large temperature differences in the 
transversal direction of the strip are allowed. In this 
regime, the temperature variations in the transversal 
direction of the strip can be neglected, being very 
small, of order ~‘/a. compared with the overall tem- 
perature difference. That is AT,. CC AT. This regime is 
called the thermally thin wall regime. The first relation 
in (3) can also be written in the form t, - cctdL, where 
tdL - L2p,,,/c,i, corresponds to the diffusion time in 
the longitudinal direction. For small values of c( com- 
pared with unity, the evolution time is shorter than the 
longitudinal diffusion time, indicating the existence 
of large temperature variations in the longitudinal 
direction. Then c( is a measure of the importance of 
the longitudinal heat conduction in the cooling 
process. For values of a/e’ - 1, the evolution time is 
of order of the transversal diffusion time and then the 
temperature variations in both directions of the strip 
now are very important. This regime is called the 
thermally thick wall regime. In this regime because 
E cc 1, the longitudinal heat conduction through the 
strip is very small and can be neglected. Due to the 
singular character of the limit t( -+ 0, the longitudinal 
heat conduction term is to be retained only in thin 
layers close to the vertical edges of the strip, in order 
to achieve the adiabatic boundary condition. 

The characteristic residence time in the boundary 
layer flow t,, of order t, N L/u,., can be obtained using 
(1). The quasi-steady approximation for the fluid is 
fully justified, for large values of the ratio t,.tr. This 
ratio is then given by 

2’s >> 1. (4) 

For large values of the Rayleigh number, relation (4) 
holds. This is the limit studied in this work. 

Using the guidance of the order of magnitude esti- 
mates, we introduce the following nondimensional 
independent variables 

(5) 

together with the nondimensional dependent variables 

f= +pr 
54’5 vRa’/s x3/5 ’ 

d = (P-PoWPr 
5’i5p,,2 &4/s x2’5 ’ 

Q= T-T, T, - T, 
____ o,=--- 
Two - Tm ’ Two - T, 

(6) 

Here x is the horizontal distance from one of the edges 
of the strip, y is the vertical distance measured from 
the middle plane of the strip pointing upward, $ is the 
stream function defined in the usual way and p is 
the pressure. The nondimensional balance equations, 
using the Boussinesq and boundary layer approxi- 
mations, then take the form 

!?+3f$=5y& --_-- 
a+ ( af do af a0 

aq 8~ 8~ aq > (7) 

i a2 a’f @- a’f =- - [(3 Y ~--- 
Pr all 

_3f"zf +5x 

a+ ( as ax af7 ax a$ )I (9) 

for the fluids and 

aze, tl a20, ae, 
cc,+----_- 

ax2 E2 a22 87 (10) 

for the strip. The initial condition is 
0,(x, z, z = 0) = 1, while the boundary conditions are 
given by 

at,=2-k=o (11) 

a0 
L=O forx=O and x=1 
ax (13) 

af -=O=4=0 forq+co. 
al? 

(14) 

In general this system of elliptic equations can be 
numerically integrated. In the following section we 
explore asymptotic solutions in both, the thermally 
thin and thick wall regimes. 

3. THERMALLY THIN WALL REGIME 

As mentioned before, for very large values of cl/e* 

compared with unity, the temperature variations in 
the transversal direction in the wall can be neglected. 
In this regime, the nondimensional energy equation 
for the wall (10) can be integrated along the trans- 
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versa1 coordinate, resulting after applying the bound- 
ary conditions (11) and (12) 

Equations (18) can be integrated from x = 0 to x = I 
and after applying the adiabatic boundary conditions 
at both edges, we obtain 

a2e,,. ao, i ae 
a,--=--- ax- aS x2.5 al? ,,=“’ 

This equation must be solved with initial condition 
f&,(x, z = 0) = 1 (another different initial condition 
can be introduced without difficulty), together with 
the adiabatic conditions for the lateral surface of the 
wall given by equations (13). In the following sub- 
section we present the asymptotic solution for CI >> 1, 
for this thermally thin wall regime. For values of IX 
order unity, the problem must be solved numerically. 

3.1. Asymptotic limit CI >> 1 
For very large values of the parameter CI, the non- 

dimensional temperature of the plate changes very 
little in the longitudinal direction, of order I-‘. Two 
time scales appear in this problem. A slow time scale 
of order unity in z controlling the global transient 
evolution response of the plate and a rapid time scale 
of order CI~’ at the beginning of the process. This rapid 
transient is due to the initial condition of the uniform 
plate temperature. In the soliddfluid interface, the heat 
flux to the ambient fluid decreases downstream, 
because the boundary layer is thicker there, thus gen- 
erating important longitudinal temperature gradients. 
Heat is then diffused downstream in the strip in a 
short time of order K’, reaching the conditions for a 
slow further evolution of the plate temperature. For 
a thermally thin wall, this conjugate heat transfer 
problem can be studied using multiple scale analysis 
in the asymptotic limit CI + co, assuming the following 
expansions 

where s and CJ are the slow and fast time scales defined 
as follows : 

s = z and cr = CIZ, (17) 

with 52 corresponding to any variable of the fluid, like 
t9,for 4. Introducing the above relationships (16) and 
(17) into the non-dimensional governing equation for 
the plate (15), we obtain the following set of equations 

b ah,,-,, I[ 1 dbl. 
zz I 1 as x2’5 aq rl=o 

for all i, (18) 

where b, = 0 and bj = 1 for i > 0. The problem is 
to be solved with the following initial and boundary 
conditions 

B,,(x,O,O) = l,&,,(x,O,O) =0 fori>O, 

ae 
‘=O atX=O,l foralli. 
3% 

(19) 

-/O’$~~,l_,,]=O foralli. (20) 

The right-hand side of equations (20) has to be zero 
in order to avoid having secular terms for B,,+ The 
leading order variable QWO cannot be a function of the 
short time scale CT and also the longitudinal coordinate 
x, because b, = 0. Thus, Q,, depends only on the large 
time scale s, NW0 = O,,(s). This function can be found 
after integrating the first order equation (20), with 
the corresponding adiabatic conditions at both edges, 
giving the first order differential equation for O,,,] as 

5 dO, dQ,vo 

3 drl a=o ds 
(21) 

Using the invariance of the boundary layer equations 
under the group of transformations 

we can normalize them using B = fI,+.o. The problem 
then reduces to the classical heat transfer problem 
with a surface nondimensional temperature of unity. 
Therefore [9] 

agO - 
at7 4=o 

= - G (96,‘s 
0 no> (23) 

where Go is the fluid nondimensional temperature 
gradient at the wall for the normalized case, 
G,(h) M 0.394 Pr”“, for Prandtl numbers close to 
unity [lo]. Using equations (21) and (23) with the 
initial condition O,,,,(O) = 1 we obtain the leading term 
of the asymptotic solution for 0, as 

f&o = 
1 

( > 
l++s 

5’ (24) 

Introducing the solution for 0,,,o into the first order 
equation (18), this takes the form 

(25) 

with the initial and boundary conditions given by 
equation (19). This equation can be more simplified 
by introducing the function e&o) in the following 
form 
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Therefore, equation ~(25) takes the homogeneous form 

The initial and boundary conditions are 

cp(x, 0,O) =: F(X) = - ; x2 + ; x8/5, 

-=O, atX=O and x=1. 
ax 

(27) 

Using the Fourier transform technique, the solution 
of the equation (26) can be written as 

cp(x, S, a) = 2 [A’,(s) cosnnx] exp [ -n’x’o] (28) 
n=0 

where the initial conditions for the functions Ai are 
given by 

s 1 

A,(O) = 2 F(x) cos nnx dX for n = 1,2, . (29) 
0 

Therefore, the solution to equation (10) is finally given 
as 

+ f [A,(s) cosnrr~] exp [ -n’x’a] (30) 
n=, 1 

The nondimensional temperature gradient to the first 
order in the fluid is 

-;G,(8/5)x”~‘+A&)GJO)+D 
> 

where D has the rapid vanishing terms containing 
exp [ - n’n’cr]. The functions G,(m) are plotted in Fig. 
2, representing the nondimensional temperature 
gradients for the linearized version of equations (7)- 
(9), with the conditions at the wall given by f3,,0 = 1 
and 0,, = x”. Repeating again the procedure, the 
second order equation in (20) from x = 0 to x = 1, 
we finally obtain 

a 1 --j l?,.:dX_e&=$ 
&J 0 [( 

5G, (2) 26 

25G, (g/S) + 5A,(s)G, (0) ___- 
sg 3 

i o’.l I 

1 10 
Pr 

Fig. 2. Values of the nondimensional temperature gradients 
GO(Pr)yG,(n, pr), for different values of n, as a function of 

the Prandtl number. The function K(h) is also plotted. 

-G&g’ (2&(s)- $)+ y] = 0 (31) 

where edt means the exponentially decaying terms. In 
this case we obtain an ordinary differential equation 
for A,(s), to be solved with the initial condition 
A,(O) = j: F(x) dx. The solution is given by 

A,(s) = A,(O)+K(Pr)ln I+ 2.~ I 1 
where 

75 G, (S/5) 
~ 

+% Go 

For a Prandtl number of unity, we obtain 
K(1) N 0.06511. Figure 2 also shows K(B). For all 
possible Prandtl numbers, K(Pr) is always positive. 

Up to the first order, the nondimensional tem- 
perature at the plate takes the form 

0, = (l+~s)~-~~(l+~.~)6 

x ~~z-~~8~5+&+K(Pr)ln 
{ [ 1 ltqs 

+ f A,(s) exp( -n’rca) cos nrcx + 0(ae2). (32) 
n=l 

Finally, the corresponding value of the overall non- 
dimensional thermal energy of the plate is then 
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(33) 

The transient evolution nondimensional time needed 
to reachAny prescribed value of the overall thermal 
energy, Q,,,, can be approximated by 

5 
--N 1-Fln[l+$r*], 
z* 

(34) 

where r* corresponds to the value for c( + co. For 
Pr = 1 and 8, = 0.25, r* N 2.4328 and r/r* 2 
1 -O.O0742/cr. Due to the fact that K(Pr) is always 
positive, the transient process is faster for de- 
creasing values of c(. This means that reducing the 
importance of the longitudinal heat conduction in the 
wall (for example by decreasing the thermal con- 
ductivity of the strip material) makes faster the coo- 
ling process in this regime. Therefore, it must be a 
minimum nondimensional cooling time in the merging 
region of both, the thermally thin and thick wall 
regimes. 

4. THERMALLY THICK WALL REGIME 

In this regime, the longitudinal heat conduction is 
also very small and is to be neglected. The energy 
balance equation for the plate then reduces to 

(35) 

where 5 = W/C’ is the appropriate nondimensional 
time for the thermally thick wall regime. Equation 
(35) has to be solved with the initial and boundary 
conditions : 

Bw(x,z,O)=O, %=O atz= -1, 

EL 2 a8 
--- atrj=z--I =O. aZ mx215 au (36) 

To study the asymptotic limit of a/e2 + 0, we introduce 
the following regular perturbation expansion for the 
nondimensional variables, given by : 

B,(x,z.0=B,~o(X,i,~)+~8,~l(x~z.e,+o ; 
2 

[( )I 
(37) 

(38) 

where Q corresponds to any variable of fluid, like 0,f 
or 4. In this form, we obtain up to terms of order a/e’ 
the following set of equations : 

a2 o,,., -=$ foralli a2 (39) 

with the following initial and boundary conditions 

ah+ , j 
dz >=-_I 

= 0, Q,.,(x,z,O) = 0 for i > 0. (40) 

The leading order solution for 0, is the trivial solution 
0, = 0. The solution to equation (39) for BWO can then 
be written as 

xcos((n- 1/2)rr(z+I))exp(-(n-1/2)*n25). (41) 

Introducing the solution (41) into the boundary con- 
ditions (40) the first order equations transform to 

(42) 

with the initial and boundary conditions 

&I (x, z, 0) = 0, 

I ae, -- 
X215 aq q=o = --H(5), yff _~ _ = 0. (43) 

I 

The solution to the first order in the fluid is then given 

by 

o,, (x, 0, 5) = x”3 (9 

Here, the function H(r) is given by 

H(t) = 2 f exp(-(n-1/2)2K2t) 
n=, 

The fluid balance equations are to be solved using 
the conditions given in equation (43). This in fact 
represents the classical problem with a known heat 
flux. The solution can be obtained by assuming 

where GI13(Pr) is the nondimensional temperature 
gradient at !j = 0, for the reduced normalized problem 
with ~(0) = 1, that is G,,,(Pr) = -dq/d!j N 
0.69124Pr’i20, for values of the Prandtl number close 
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tounity [lo]. Wedeline@,,,(X,z, 5) = x’~~~~,(z, 5). The 
first order corrections for the nondimensional tem- 
perature in the wall are then 

(46) 

Equations (46) an: needed to solve the first order 
equation (42). The overall nondimensional thermal 
energy of the plate 4, = j: [i 8, dX dz, for this limit 
up to the first order, takes the form 

(47) 

The leading term solution gives 

d&a 
t* 1: 0.4767 and x tl = -0.6165 

for 0, = 0.25 (48) 

and is independent of the flow conditions (purely solid 
diffusion). The first order correction gives 

T iJ* &2 3 IV+, 5*) _~_----__~ 
T* r* LY 4t* de,, 

0.19595; +0.4053 

d5 r’ 

(49) 

where Z(Pr, c*) = s; rp,, dz L 0.8105 for Pr = 1. 

5. REWLTS AND DISCUSSION 

The system of equations (7) to (14) were integrated 
numerically using Keller’s method [ 131 for the bound- 
ary layer equations, together with the technique of 
alternate directions from Peaceman, Rachford and 
Douglas for the heat conduction equation for the plate 
[14]. The boundary conditions in the fluid for rl +co 
uses a finite mesh point, qocr chosen by making 
numerical experiments by increasing r/m until a non- 
significative change in the solution is obtained (for 
Pr = 1, q& = 9 produces an error in the solution less 
than 1 x lo-“). Because of the nonlinearity of the 
boundary layer equations, it was necessary to 
implement an iterative method based on the Newton’s 
technique [13], with a convergence lower than 
I x lo-“. The mesh used for the fluid balance equa- 
tions were 40 x 913, in the longitudinal and transversal 
directions, respectively with a time step not larger than 
0.001. For the solid we used a 90 x 50 grid. In all the 
calculations presented in this work we assumed for 
simplicitly a value of Pr = 1 and a uniform initial 
condition 0, = 1. 

The most important parameter to be obtained in 
this work is the nondimensional evolution time. Fig- 

Fig. 3. Normalized nondimensional evolution time as a func- 
tion of the nondimensional longitudinal thermal con- 
ductance of the plate a, for different values of the aspect ratio 
of the plate E. The asymptotic solution for c( + co is also 

plotted with symbols 0. 

ure 3 shows the nondimensional transient time z 
needed to reach the value of 8, = 0.25, as a function 
of a and different values of E. The time is normalized 
with z*, that is the nondimensional time needed to 
reach the same global thermal energy for the case of 
a --, co, z* ‘X 2.4328.. . . The asymptotic solution for 
the thermally thin wall regime is also plotted, showing 
how the transient evolution time is reduced always as 
c( decreases in this regime. As the value of c decreases, 
the minimum value of the normalized evolution time 
also decreases. This minimum value is produced in the 
thermally thin wall regime with negligible longitudinal 
heat conduction effects, c2 CC a << 1. The asymptotic 
solution for CI + 00, gives accurate results for values 
of c( of order unity, as the value of E decreases. 

Figure 4 shows the nondimensional evolution time 
as a function of cc/c’. The two term asymptotic solution 
for the thermally thick wall regime (49) is also plotted. 
All curves for different values of E show a universal 
character for CC/E~ + 0 and a/c’ -+ co. However, in the 
middle region (transition from the thermally thin to 
thermally thick wall regimes) the solution depends 
strongly on the aspect ratio of the plate, E. In all cases, 
we obtain a minimum value of the nondimensional 
evolution time in this middle region. However, this 
minimum value is also dependent strongly on E. 

For slightly different values of the Prandtl number 
(for example air), we can obtain the evolution cooling 
time by using the Taylor series expansion result 

7(Pr) -z(Pr = 1) = 0.4509(Prp”20 - 1) 

+ F(,,_ 1). 

By way of illustration, we did some calculations in 
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lo-' I 10 10" 10" 10" 10” IO” 10' I O8 
Fig. 4. Normalized nondimensional evolution time as a func- 
tion of the nondimensional parameters a/s’, for different 
values of the aspect ratio of the plate E. The two term asymp- 
totic solution for the thermally thick wall regime a/&’ + 0 is 

also plotted with symbols x 

physical units of the cooling time for a plate with 
different materials in air. We choose a temperature 
difference of 73 K, and the following plate dimen- 
sions: h = 0.75 cm and L = 7.5 cm. The Rayleigh 
number is then 2.893 x 106. which is large enough to 
produce a boundary layer but small enough to main- 
tain the laminar flow. Figure 5 shows the resulting 
values of CI, the nondimensional cooling time and the 
cooling time in physical units for an aluminum, silver, 
steel, lead and glass plates. For all the materials used 

for the plate, except glass, we obtain fairly large values 
of M and thus cr/e*. The appropriate regime is then the 
thermally thin regime with large values of c(. For the 
glass plate we are also in the thermally thin wall 
regime, but with values of CI of order unity. 

In summary, the most important conclusion from 
this work is related to the influence of the longitudinal 
heat conduction through the solid for the transient 
process. The nondimensional evolution time shows a 
minimum for finite values of the parameter c(. This 
minimum appears in the thermally thin wall regime, 
decreasing its value as E decreases. The transient pro- 
cess is then faster for the thermally thin wall regime 
without the effect of the longitudinal heat conduction 
(EZ << c! << 1). 
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